Benchmark I agv13
Sniffing is a perceptually-relevant behavior, defined as the active sampling of odors through the nasal cavity for the purpose of information acquisition. This behavior, displayed by all terrestrial vertebrates, is typically identified based upon changes in respiratory frequency and/or amplitude[1] [2] , and is often studied in the context of odor guided behaviors and olfactory perceptual tasks. Sniffing is quantified by measuring intra-nasal pressure or flow or air[3] [4] [5] [6] or, while less accurate, through a stain gauge on the chest to measure total respiratory volume[7] . Strategies for sniffing behavior vary depending upon the animal, with small animals (rats, mice, hamsters) displaying sniffing frequencies ranging from 4-12Hz[2] [3] [8] , but larger animals (humans) sniffing at much slower frequencies, usually <2Hz[7] [9] . Subserving sniffing behaviors, evidence for an ‘olfactomotor’ circuit in the brain exists[10] [11] , wherein perception or expectation of an odor can trigger brain respiratory centers to allow for the modulation of sniffing frequency and amplitude and thus acquisition of odor information. Sniffing is analogous to other stimulus sampling behaviors, including visual saccades, active touch, and whisker movements in small animals (viz., whisking)[12] [13] . Atypical sniffing has been reported in cases of neurological disorders, especially those disorders characterized by impaired motor function and olfactory perception[14] [15] .
Contents
History of sniffing
Methods for quantifying sniffing
Video
Chest strain
Nasal microphone
Nasal thermocouple
Nasal pressure
Sniffing in small animals
Early studies in rats
Sniffing in freely exploring rodents
Sniffing during odor guided tasks
Sniffing in semi-aquatic animals
Sniffing and control of odor input to the brain
Sniffing in humans
Sniffing versus Smelling
Functional imaging of sniff-evoked activity
Neural control of sniffing
Evidence for an olfactomotor loop
Relation of sniffing to other stimulus sampling behaviors
Whisking
Saccades
Touch
Licking
Relevance to neurological disorders
Alzheimer’s disease
Parkinson’s disease
References
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]
- ↑ 1.0 1.1 Welker, WI (1964). "Analysis of sniffing in the albino rat". Behavior (22): 223–244.
- ↑ 2.0 2.1 2.2 Youngentob, S.L.; Mozell, M. M., Sheehe, P. R. & Hornung, D. E. (1987). "A quantitative analysis of sniffing strategies in rats performing odor discrimination tasks". Physiol Behav. 41: 59–69. Cite uses deprecated parameter
|coauthors=
(help) - ↑ 3.0 3.1 3.2 Wesson, D. W.; Donahou, T. N., Johnson, M. O. & Wachowiak, M (2008). "Sniffing behavior of mice during performance in odor-guided tasks". Chem Senses (33): 581–596. Cite uses deprecated parameter
|coauthors=
(help) - ↑ 4.0 4.1 Verhagen, J. V.; Wesson, D. W., Netoff, T. I., White, J. A. & Wachowiak, M (2007). "Sniffing controls an adaptive filter of sensory input to the olfactory bulb". Nat Neurosci (10): 631–639. Cite uses deprecated parameter
|coauthors=
(help) - ↑ 5.0 5.1 Uchida, N; Mainen, Z. F (2003). "Speed and accuracy of olfactory discrimination in the rat". Nat Neurosci (6): 1224–1229. Cite uses deprecated parameter
|coauthors=
(help) - ↑ 6.0 6.1 Macrides, F; Eichenbaum, H. B. & Forbes, W. B (1982). "Temporal relationship between sniffing and the limbic theta rhythm during odor discrimination reversal learning". J Neurosci (2): 1705–1711. Cite uses deprecated parameter
|coauthors=
(help) - ↑ 7.0 7.1 7.2 Laing, D. G. (1983). "Natural sniffing gives optimum odour perception for humans". Perception (12): 99–117.
- ↑ 8.0 8.1 Vanderwolf, C. H. (1992). "Hippocampal activity, olfaction, and sniffing: an olfactory input to the dentate gyrus". Brain Research (593): 197–208.
- ↑ 9.0 9.1 Sobel, N.; Prabhakaran, J. E. Desmond, G. H. Glover, R. L. Goode, E. V. Sullivan and J. D. E. Gabrieli (1998). "Sniffing and smelling: separate subsystems in the human olfactory cortex". Nature (392): 282–286. Cite uses deprecated parameter
|coauthors=
(help) - ↑ 10.0 10.1 Vanderwolf, C. H. (2001). "The hippocampus as an olfacto-motor mechanism: were the classical anatomists right after all?". Behav Brain Res (127): 25–47.
- ↑ 11.0 11.1 Johnson, B. N.; Mainland, J. D. & Sobel, N. (2003). "Rapid olfactory processing implicates subcortical control of an olfactomotor system". J Neurophysiol (90): 1084–1094. Cite uses deprecated parameter
|coauthors=
(help) - ↑ 12.0 12.1 Uchida, N.; Kepecs, A. & Mainen, Z. F. (2006). "Seeing at a glance, smelling in a whiff: rapid forms of perceptual decision making". Nat Rev Neurosci (7): 485–491. Cite uses deprecated parameter
|coauthors=
(help) - ↑ 13.0 13.1 Deschenes, M.; Moore, J. & Kleinfeld, D. (2011). "Sniffing and whisking in rodents". Current Opinion in Neurobiology (22): 1–8. Cite uses deprecated parameter
|coauthors=
(help) - ↑ 14.0 14.1 Sobel, N; Thomason, M.E, Stappen, I., Tanner, C. M., Tetrud, J. W., Bower, J. M., Sullivan, E. V., and Gabrieli, J. D. E. (2001). "An impairment in sniffing contributes to the olfactory impairment in Parkinson's disease". Proc Natl Acad Sci U S A (98): 4154–4159. Cite uses deprecated parameter
|coauthors=
(help) - ↑ 15.0 15.1 Wesson, D. W.; Varga-Wesson, A. G., Borkowski, A. H. & Wilson, D. A (2011). "Respiratory and sniffing behaviors throughout adulthood and aging in mice". Behavioural Brain Research (223): 99–106. Cite uses deprecated parameter
|coauthors=
(help)